\(\int \frac {b-\sqrt {b^2-4 a c}+2 c x^2}{\sqrt {a+b x^2+c x^4}} \, dx\) [119]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 39, antiderivative size = 296 \[ \int \frac {b-\sqrt {b^2-4 a c}+2 c x^2}{\sqrt {a+b x^2+c x^4}} \, dx=\frac {2 \sqrt {c} x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}-\frac {2 \sqrt [4]{a} \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt {a+b x^2+c x^4}}+\frac {\left (b+2 \sqrt {a} \sqrt {c}-\sqrt {b^2-4 a c}\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}} \]

[Out]

2*x*c^(1/2)*(c*x^4+b*x^2+a)^(1/2)/(a^(1/2)+x^2*c^(1/2))-2*a^(1/4)*c^(1/4)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)
^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(
1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+b*x^2+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)+1/2*(cos(2*a
rctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x/a^(1/4)))
,1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^(1/2))*(b+2*a^(1/2)*c^(1/2)-(-4*a*c+b^2)^(1/2))*((c*x^4+b*x^2
+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/a^(1/4)/c^(1/4)/(c*x^4+b*x^2+a)^(1/2)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1211, 1117, 1209} \[ \int \frac {b-\sqrt {b^2-4 a c}+2 c x^2}{\sqrt {a+b x^2+c x^4}} \, dx=\frac {\left (-\sqrt {b^2-4 a c}+2 \sqrt {a} \sqrt {c}+b\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {2 \sqrt [4]{a} \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt {a+b x^2+c x^4}}+\frac {2 \sqrt {c} x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2} \]

[In]

Int[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/Sqrt[a + b*x^2 + c*x^4],x]

[Out]

(2*Sqrt[c]*x*Sqrt[a + b*x^2 + c*x^4])/(Sqrt[a] + Sqrt[c]*x^2) - (2*a^(1/4)*c^(1/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqr
t[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt
[c]))/4])/Sqrt[a + b*x^2 + c*x^4] + ((b + 2*Sqrt[a]*Sqrt[c] - Sqrt[b^2 - 4*a*c])*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[
(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c
]))/4])/(2*a^(1/4)*c^(1/4)*Sqrt[a + b*x^2 + c*x^4])

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1211

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps \begin{align*} \text {integral}& = -\left (\left (2 \sqrt {a} \sqrt {c}\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+b x^2+c x^4}} \, dx\right )+\left (b+2 \sqrt {a} \sqrt {c}-\sqrt {b^2-4 a c}\right ) \int \frac {1}{\sqrt {a+b x^2+c x^4}} \, dx \\ & = \frac {2 \sqrt {c} x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}-\frac {2 \sqrt [4]{a} \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt {a+b x^2+c x^4}}+\frac {\left (b+2 \sqrt {a} \sqrt {c}-\sqrt {b^2-4 a c}\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.23 (sec) , antiderivative size = 187, normalized size of antiderivative = 0.63 \[ \int \frac {b-\sqrt {b^2-4 a c}+2 c x^2}{\sqrt {a+b x^2+c x^4}} \, dx=-\frac {2 i \sqrt {2} a \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{\sqrt {a+b x^2+c x^4}} \]

[In]

Integrate[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/Sqrt[a + b*x^2 + c*x^4],x]

[Out]

((-2*I)*Sqrt[2]*a*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c
])]*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x]
, (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])])/Sqrt[a + b*x^2 + c*x^4]

Maple [A] (verified)

Time = 7.02 (sec) , antiderivative size = 515, normalized size of antiderivative = 1.74

method result size
default \(\frac {b \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {c a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{\sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}-\frac {\sqrt {-4 a c +b^{2}}\, \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}\) \(515\)
elliptic \(-\frac {\left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right ) \sqrt {-\left (c \,x^{4}+b \,x^{2}+a \right ) \left (4 a c -b^{2}\right )}\, \left (\frac {\left (4 a c -b^{2}\right ) \sqrt {2}\, \sqrt {4-\frac {2 \left (\left (-4 a c +b^{2}\right )^{\frac {3}{2}}-4 a b c +b^{3}\right ) x^{2}}{a \left (4 a c -b^{2}\right )}}\, \sqrt {4+\frac {2 \left (\left (-4 a c +b^{2}\right )^{\frac {3}{2}}+4 a b c -b^{3}\right ) x^{2}}{a \left (4 a c -b^{2}\right )}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {\left (-4 a c +b^{2}\right )^{\frac {3}{2}}-4 a b c +b^{3}}{a \left (4 a c -b^{2}\right )}}}{2}, \frac {\sqrt {-4+\frac {2 \left (-4 a b c +b^{3}\right ) \left (\left (-4 a c +b^{2}\right )^{\frac {3}{2}}+4 a b c -b^{3}\right )}{a \left (4 a c -b^{2}\right ) \left (-4 a \,c^{2}+b^{2} c \right )}}}{2}\right )}{4 \sqrt {\frac {\left (-4 a c +b^{2}\right )^{\frac {3}{2}}-4 a b c +b^{3}}{a \left (4 a c -b^{2}\right )}}\, \sqrt {-4 a \,c^{2} x^{4}+b^{2} c \,x^{4}-4 a b c \,x^{2}+b^{3} x^{2}-4 c \,a^{2}+b^{2} a}}+\frac {b \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {c a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{\sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\right )}{2 \sqrt {-\left (c \,x^{4}+b \,x^{2}+a \right ) \left (4 a c -b^{2}\right )}\, c \,x^{2}+4 \sqrt {c \,x^{4}+b \,x^{2}+a}\, a c -\sqrt {c \,x^{4}+b \,x^{2}+a}\, b^{2}+\sqrt {-\left (c \,x^{4}+b \,x^{2}+a \right ) \left (4 a c -b^{2}\right )}\, b}\) \(807\)

[In]

int((b+2*c*x^2-(-4*a*c+b^2)^(1/2))/(c*x^4+b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/4*b*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)
^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2
*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-c*a*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2
))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(Ellipti
cF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/
2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2)))-1/4*(-4*a*c+b^2)
^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2
)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+
2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.11 (sec) , antiderivative size = 322, normalized size of antiderivative = 1.09 \[ \int \frac {b-\sqrt {b^2-4 a c}+2 c x^2}{\sqrt {a+b x^2+c x^4}} \, dx=\frac {2 \, \sqrt {\frac {1}{2}} {\left (a c x \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - a b x\right )} \sqrt {c} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b}{c}} E(\arcsin \left (\frac {\sqrt {\frac {1}{2}} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b}{c}}}{x}\right )\,|\,\frac {b c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) - \sqrt {\frac {1}{2}} {\left (\sqrt {b^{2} - 4 \, a c} b x - {\left (2 \, a b + b^{2}\right )} x + {\left ({\left (2 \, a - b\right )} c x + \sqrt {b^{2} - 4 \, a c} c x\right )} \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}}\right )} \sqrt {c} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b}{c}} F(\arcsin \left (\frac {\sqrt {\frac {1}{2}} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b}{c}}}{x}\right )\,|\,\frac {b c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) + 4 \, \sqrt {c x^{4} + b x^{2} + a} a c}{2 \, a c x} \]

[In]

integrate((b+2*c*x^2-(-4*a*c+b^2)^(1/2))/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

1/2*(2*sqrt(1/2)*(a*c*x*sqrt((b^2 - 4*a*c)/c^2) - a*b*x)*sqrt(c)*sqrt((c*sqrt((b^2 - 4*a*c)/c^2) - b)/c)*ellip
tic_e(arcsin(sqrt(1/2)*sqrt((c*sqrt((b^2 - 4*a*c)/c^2) - b)/c)/x), 1/2*(b*c*sqrt((b^2 - 4*a*c)/c^2) + b^2 - 2*
a*c)/(a*c)) - sqrt(1/2)*(sqrt(b^2 - 4*a*c)*b*x - (2*a*b + b^2)*x + ((2*a - b)*c*x + sqrt(b^2 - 4*a*c)*c*x)*sqr
t((b^2 - 4*a*c)/c^2))*sqrt(c)*sqrt((c*sqrt((b^2 - 4*a*c)/c^2) - b)/c)*elliptic_f(arcsin(sqrt(1/2)*sqrt((c*sqrt
((b^2 - 4*a*c)/c^2) - b)/c)/x), 1/2*(b*c*sqrt((b^2 - 4*a*c)/c^2) + b^2 - 2*a*c)/(a*c)) + 4*sqrt(c*x^4 + b*x^2
+ a)*a*c)/(a*c*x)

Sympy [F]

\[ \int \frac {b-\sqrt {b^2-4 a c}+2 c x^2}{\sqrt {a+b x^2+c x^4}} \, dx=\int \frac {b + 2 c x^{2} - \sqrt {- 4 a c + b^{2}}}{\sqrt {a + b x^{2} + c x^{4}}}\, dx \]

[In]

integrate((b+2*c*x**2-(-4*a*c+b**2)**(1/2))/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral((b + 2*c*x**2 - sqrt(-4*a*c + b**2))/sqrt(a + b*x**2 + c*x**4), x)

Maxima [F]

\[ \int \frac {b-\sqrt {b^2-4 a c}+2 c x^2}{\sqrt {a+b x^2+c x^4}} \, dx=\int { \frac {2 \, c x^{2} + b - \sqrt {b^{2} - 4 \, a c}}{\sqrt {c x^{4} + b x^{2} + a}} \,d x } \]

[In]

integrate((b+2*c*x^2-(-4*a*c+b^2)^(1/2))/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((2*c*x^2 + b - sqrt(b^2 - 4*a*c))/sqrt(c*x^4 + b*x^2 + a), x)

Giac [F]

\[ \int \frac {b-\sqrt {b^2-4 a c}+2 c x^2}{\sqrt {a+b x^2+c x^4}} \, dx=\int { \frac {2 \, c x^{2} + b - \sqrt {b^{2} - 4 \, a c}}{\sqrt {c x^{4} + b x^{2} + a}} \,d x } \]

[In]

integrate((b+2*c*x^2-(-4*a*c+b^2)^(1/2))/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((2*c*x^2 + b - sqrt(b^2 - 4*a*c))/sqrt(c*x^4 + b*x^2 + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {b-\sqrt {b^2-4 a c}+2 c x^2}{\sqrt {a+b x^2+c x^4}} \, dx=\int \frac {b+2\,c\,x^2-\sqrt {b^2-4\,a\,c}}{\sqrt {c\,x^4+b\,x^2+a}} \,d x \]

[In]

int((b + 2*c*x^2 - (b^2 - 4*a*c)^(1/2))/(a + b*x^2 + c*x^4)^(1/2),x)

[Out]

int((b + 2*c*x^2 - (b^2 - 4*a*c)^(1/2))/(a + b*x^2 + c*x^4)^(1/2), x)